

ARMATURE ELECTRIC LIMITED

PdMA Case Study – Mining Drill Motor

A Leader in Electric Motor Testing

CASE STUDY #1 DETECTING BROKEN ROTOR BAR

Mining customer was concerned about the increasing bearing noise on one of their Electric Drills. As well as performing a Vibration Analysis, we recommended performing other motor tests using the PDMA MCEMax test equipment, to give an overall motor condition evaluation

Test Procedure

Drill motor was locked out and isolated from power supply

MCEMax test equipment was set up

Static motor tests were performed with the test machine connected to the motor T-Leads that were disconnected from the soft starter

Dynamic motor tests were performed with the test machine connected to the Multilin Protection Relay

Static Test Results

Static tests showed the stator winding to be balanced between all 3 phases, indicating no short circuits developing

Insulation resistance to ground was good, however the polarization index was low at 1.092. A healthy stator should have a PI of at least 2.0

Test Date	02/24/17
Test Time	11:22 AM
Test Location	Drive Output
User	Administrator
Tester Serial	5659
MTAP ID	
	Baseline
Frequency	1200
Charge Time	600
Voltage	5000
Motor Temp	37°C
Measured Mohm	5737.11
Corrected Mohm	4700
pF Ph 1 to Ground	56800
ohm Ph 1 to 2	0.8115
ohm Ph 2 to 3	0.8114
ohm Ph 3 to 1	0.81
mH Ph 1 to 2	55.6
mH Ph 2 to 3	56.6
mH Ph 3 to 1	55.7
Average	55.95
Inductance	
% Res. Imbalance	0.12
% Ind. Imbalance	1.13
D/A Ratio	1.334
Polarization Index	1.092

Power Results

Power results showed the stator was ok. Voltage and current were balanced.

	VOLT	AGE				POWER			
	Fund RMS	Tot RMS	C.F.	THD		kW	kVAR	kVA	Pf
Voltage 1-2	6957.07	6957.83	1.42	0.89	Phase 1	125.62	80.12	149.00	0.84
Voltage 2-3	6965.84	6966.56	1.43	0.82	Phase 2	118.94	69.64	137.83	0.86
Voltage 1-3	7000.19	7001.24	1.40	1.27	Phase 3	116.84	81.39	142.39	0.82
Average	6974.37	6975.21			Total	361.41	231.14	429.22	0.84
% Imbalance	0.37	0.37	HVF	0.00	Power Sequence	361.41	230.84	428.84	0.84
% NEMA Derating	100.00 % NEMA Derating 100.00								
Voltage 1	4031.60	4032.16	1.41	1.17					
Voltage 2	4011.72	4012.08	1.43	0.65		Efficiency			
Voltage 3	4036.64	4037.18	1.43	1.12		Lindercy			
Average	4026.65	4027.14				01.10	1		
% Imbalance	0.37	0.37			Efficiency	91.13			
					HP Output	441./3			
	01100	-			kW Output	329.53			
	CURF	ENI			l orque Output (tt-lb)	1294.50]		
	Fund RMS	Tot RMS	C.F.	THD					
Current 1	36.94	36.95	1.45	1.00		CEOUENC	-		
Current 2	34.35	34.35	1.46	1.06		SEQUENC	E		
Current 3	35.26	35.27	1.45	1.00		Positive	Negative	Zero	
Average	35.52	35.53			Voltage Ph-Ph	26.33	6974.34	0.00	
% Imbalance	4.02	4.02			Voltage Ph-N	15.20	4026.64	0.00	1
% FLA	56.07	56.09			Current	1.57	35.50	19.67]
						Self	Angle	Mutual	Angle
	IMPED	ANCE			Zero	113.41	32.53	113.41	152.53
	D1	Manager	A		Positive	0.80	85.13	0.83	85.18
Dhave 1	Real	100.12	Angle	1	Negative	4.82	220.98	5.46	105.18
Phase 1	100.83	116.81	32.49	-	Phase Configuration		Phase to Phase	e]
Phase 3	93.97	114.48	34.83	-	Phase Rotation	Clockwise			
% Imbalance	5.45		000	J					2
	2.10								

Rotor Evaluation

Rotor Evaluation Spectrum showed high pole pass frequency sidebands around line frequency. This indicated rotor bar defects were present

After the motor was sent to Armature Electric and dismantled, the rotor bar damage was evident.

2 rotor bars were melted, and many more had twisted at the slot exit where the bars joined the end rings.

This motor had experienced many full load, across the line starts

Stator

The cause of the low PI?

Copper dust from the blown rotor bars

Copper
embedded to
the stator
slots

REPAIR

The rotor required a completely new lamination stack and re-bar.

Repair

After the stator was washed, baked and the embedded copper removed, the Polarization Index greatly improved

Rotor Evaluation After Repair

With the newly laminated and re-barred rotor, another rotor evaluation was performed. Note the F_p sidebands have disappeared

Conclusion

Although it was too late for this motor, predictive trending would have picked up on this rotor fault, allowing the customer to make informed decisions about the operation of the equipment while looking into options for repair or replacement during a scheduled maintenance cycle and thereby saving thousands of dollars in repair costs and unexpected downtime.

Armature Electric Ltd, investing in technology to work with you to protect your assets.

